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Subwavelength Interferometric 
Control of Absorption in Three-port 
Acoustic Network
O. Richoux1, V. Achilleos1, G. Theocharis1 & I. Brouzos2

Utilizing the effect of losses, we show that symmetric 3-port devices exhibit coherent perfect 
absorption of waves and we provide the corresponding conditions on the reflection and transmission 
coefficients. Infinite combinations of asymmetric inputs with different amplitudes and phase at each 
port as well as a completely symmetric input, are found to be perfectly absorbed. To illustrate the above 
we study an acoustic 3-port network operating in a subwavelength frequency both theoretically and 
experimentally. In addition we show how the output from a 3-port network is altered, when conditions 
of perfect absorption are met but the input waves phase and amplitude vary. In that regard, we propose 
optimized structures which feature both perfect absorption and perfect transmission at the same 
frequency by tuning the amplitudes and phases of the input waves.

The absorption of wave energy is a phenomenon which underlies many applications in acoustics and photon-
ics including molecular sensing1,2, photodetection3, and sound proofing4,5. By exploring wave interference, the 
absorption can become much more efficient or even complete. Indeed, coherent perfect absorbers have been 
extensively studied the last years in different photonic6–14 and acoustic15–17 structures. However, the majority 
of these works deals with two-port systems. Especially in acoustics, the phenomenon of perfect absorption has 
attracted great attention the last years due to its direct applications to numerous noise reduction problems. Many 
solutions have been proposed in the low frequency regime based on subwavelength metamaterial designs, by 
critically coupling18 resonant scatterers to the waveguide i.e. by balancing the energy leackage and the internal 
losses of the resonators. Such studies include the use of membranes4,16,19–22, quarter-wavelength structures23–25, 
the concept of slow sound26–28 and Helmholtz resonators both in the linear15,29,30 and nonlinear31 regimes.

Muti-port devices have a great use in applications such as radio frequency (RF) systems and signal/informa-
tion processing. For example in microwave physics, devices such as power dividers, circulators, filters couplers 
and multiplexer are commonly used in many RF systems32,33. On the other hand, complex photonic circuits have 
been studied and designed for optical signal processing or computing in integrated optics34,35. From theoretical 
perspective, the study of complex multi-port networks is also a vibrant area of research attracting considerable 
attention in different fields, including plasmonics36–39, quantum transport40,41 and acoustics42–46.

Although Coherent Perfect Absorption (CPA) has been thoroughly studied both experimentally and theoret-
ically in two-port systems, it is only recently that multi-port devices have been proposed as perfect absorbers. In 
particular in ref.47, in an asymmetric three-port acoustic device it was found that acoustic energy could be chan-
neled from one port to another using a phase mismatch of the input. Additionally adding an additional branch in 
a standard PT-symmetric electromagnetic waveguide48,49, it was shown that it is possible to achieve asymmetric 
output from this branch when the system is excited from either the loss or the gain side of the main waveguide.

Here, using subwavelength resonators and interferometric control of absorption we illustrate, both theoreti-
cally and experimentally, an acoustic perfect absorbing network that operates at different wavelengths, different 
intensities and relative phases of the input waves. It is found that, in great contrast to the two-port case, there is an 
infinity of input wave combinations that can be completely absorbed, when the device satisfies CPA conditions. 
Moreover, we propose optimized 3-port networks which operate both as perfect absorbers and Coherent Perfect 
Transmitters (CPT), for the same frequency. We show how these systems undergo a transition from CPA to 
CPT by just tuning the phase and/or the amplitude of the input waves. A high contrast of output to input power 
ratio is obtained, due to the use of point-like acoustic scatterers. Therefore we believe that utilizing the proposed 
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subwavelength, interferometric control of absorption in multi-port devices and exploring further the role of sym-
metries could have a strong impact in the field of compact wave devices.

In Section 1, we study the general case of a three port, single-mode, scattering system and obtain the necessary 
conditions for achieving CPA. The conditions depend both on the device scattering properties and the coher-
ence of the three incoming waves. We show both theoretically and experimentally that an acoustical network 
composed by three waveguides side-loaded with Helmholtz resonators, can be tuned in order to satisfy these 
conditions, and CPA is achieved for different type of inputs (asymmetric and symmetric) in the subwavelength 
frequency regime. In Section 2, we study the interferometric control of the network using different input vectors 
when the system is in the CPA configuration. We obtain the necessary conditions under which a 3-port network 
exhibits both CPA and CPT. Using an optimization process, we propose realistic networks satisfying these condi-
tions and verify our results using finite elements 3D simulations.

Symmetric 3-port system
Scattering properties.  In this work, we study reciprocal and symmetrical 3-port acoustic networks and we 
focus our analysis on the corresponding scattering matrix which is given by the following equation
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In Eq. (1) the vectors ψ≡ | 〉+ + +p p p( , , )T1 2 3 in  and ψ≡ | 〉− − −p p p( , , )T1 2 3 out  describe the incoming and outgoing 
waves respectively as shown in Fig. 1(a). The frequency dependent coefficients r and t, correspond to the reflec-
tion and transmission when only one port is excited as explained in details in the Appendix. Note that the 
S-matrix as given by Eq. (1) is a symmetric circulant matrix which stemms both from the geometrical symmetry 
of the 3-port network and from the fact that we consider a reciprocal system.

Furthermore the eigenvalue problem associated with the S-matrix is given by

λ− =S Idet( ) 0, (2)

where the eigenvalues are found to be:

Figure 1.  (a) A schematic illustration of a general three port system with incoming and outgoing waves at each 
port. The scattering matrix S of the system is assumed to be symmetric, at some frequency range, even if the 
geometry of the device may be not. (b) The symmetric network studied here (not in scale), which is composed 
by 3 identical cylindrical waveguides with radius rt = 2.5 × 10−2 m, assembled by a Y-shape connection 
sideloaded with HRs at a distance d. (c) Details of the HRs composed by a neck with length = × −

 2 10n
2 m, a 

radius rn = 0.45 × 10−2 m branched to a cylindrical cavity with radius rc = 1.5 × 10−2 m and varying length c 
which is used in order to tune the resonance frequency f0. (d) The upper [lower] curve depicts the symmetric 
[asymmetric] CPA solutions defined the by Eqs (6 and 7), for varying resonant frequency f0 and distance d. The 
horizontal line corresponds to the configurations with d = 0.05 m. (e,f) The determinant log(|det(S)|) in the 
complex frequency plane for the configurations corresponding to the two cases of panel (d) with a (red) square 
and a (blue) circle respectively.
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and the corresponding orthonormal eigenvectors are given by:
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It is interesting to note here that, the eigenvectors of a circulant matrix are always the same and are independent 
of both the physical system (particular form of r and t) and the frequency.

The above eigenanalysis is useful for the study of CPA since if an eigenvalue λi of S is found to be zero, then 
using the corresponding eigenvector ui  as input in Eq. (1) will result in zero output, thus perfect absorption. To 
quantify the absorption efficiency of the 3-port network below we use the ratio of total output to input power 
defined as
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In the last expression we have used the fact that, since the eigenvectors ui  form a complete basis, we may write 
any input vector as a sum of ui , i.e. ψ = ∑ c ui i iin .

Coherent Perfect Absorption.  According to the eigenanalysis, a 3-port network exhibits CPA if any of the 
eigenvalues given by Eq. (3) becomes zero at some particular frequency f*. We first consider the case of λ0 = 0, 
which leads to the following condition for the scattering coefficients

r t r2 (6)s= − ≡ .

If Eq. (6) is satisfied, then a symmetric input of the form u0  [Eq. (4)] will be completely absorbed. Below we refer 
to the combination of Eq. (6) and an input u0  as symmetric CPA.

On the other hand, by setting the degenerate eigenvalues λ1,2 = 0 we obtain a different CPA condition

= ≡ .r t r (7)a

When Eq. (7) is satisfied, an input wave in the form of the asymmetric vectors u1  or u2  is completely absorbed. 
Moreover, since the system is linear, any input in the form of ψ α β= +u uin 1 2  will also be completely 
absorbed and since α and β are free parameters this leads to infinite combinations of asymmetric input waves. 
This is in great contrast with two port systems where CPA is achieved either by in-phase or out-of phase incoming 
waves. Here, the additional port acts as a “control” port which, whenever Eq. (7) is satisfied, is able to lead the 
3-port network to CPA. We further on refer to this combination of condition (7) and the inputs as asymmetric 
CPAs.

The conditions to achieve CPA given by Eqs (6) and (7) require that the transmission and reflection coeffi-
cients are specifically tuned. A popular way to achieve this is to use Fano resonance phenomena by employing 
resonant scatterers, especially regarding subwavelength manipulation of waves. In acoustics the most prominent 
example of such a scatterer is the Helmholtz resonator (HR), which has been intensively studied in the context 
of wave absorption and acoustic metamaterials. Due to the presence of HRs sided loaded to the waveguide, the 
strong interference around the resonance frequency greatly modifies both the transmission and the reflection 
coefficients and allows us to satisfy the CPA conditions.

The particular system under consideration in this work is schematically shown in Fig. 1(b,c). We consider 
all HRs to have identical resonance frequencies f0 and to be placed at the same distance d from the center of the 
device. In the low frequency regime, assuming only the propagation of the plane mode of the waveguides and 
approximating the HRs as point scatterers we can calculate t and r using the standard transfer matrix method. The 
analytic calculations of t and r are detailed in the section Method.

In order to obtain the configurations which exhibit CPA, we calculate r and t by scanning the parametric space 
(f0, d) and monitor when the conditions of Eqs (6) and (7) are satisfied. The rest of the parameters are fixed to the 
experimental values given in the caption of Fig. 1. The results are shown in Fig. 1(d) where the red (lower) curve 
corresponds to the asymmetric and the blue (upper) line depicts the symmetric CPA. Another way to illustrate 
the occurrence of the CPA is through the complex frequency plane of the determinant of the scattering matrix 
S. In this representation, by scanning the parametric space (f0, d) the zeros of the determinant are moving while 
exactly at the CPA condition, one of those crosses the real axis. Note here, that another way to achieve CPA would 
be to choose a particular point of the parametric space (f0, d) (namely fixing the geometry of the system) and 
increase the viscothermal losses of the system.

In Fig. 1(e,f), we plot the log |det S| for two different configurations which satisfy Eqs (6) and (7) respectively. 
It is directly shown that in both cases, one zero of the determinant is located on the real axis. As indicated in 
Fig. 1(e,f), the operating frequency for the CPA devices is near (but not the same) to the resonant frequency of the 
HRs due to the interaction of the resonances of each HR through the waveguides.

Experimental observation of acoustic CPA.  In this Section, we experimentally verify the analytical 
results of Fig. 1(d) in an acoustic network with d = 0.05 m. We use two sets of HRs with different resonant fre-
quencies f0 corresponding to the asymmetric and symmetric CPA as indicated respectively by the square and the 
circle in Fig. 1(d). In our experiments, the 3-ports network is driven with plane waves produced by loudspeakers 
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(AURA NS3-193-8A 3 inch) placed at the end of each port (see Fig. 2(a)). The system is considered to be symmet-
ric as long as the driving frequencies are below the first cut-of frequency of the waveguides such that no higher 
modes are propagating. To determine experimentally the reflection and transmission coefficients, a pair of micro-
phones (1/2 inch B&K) connected to each waveguide is employed, allowing the measurement of both the forward 

+pi  and backward −pi  waves in each waveguide50,51. Using the definition of the scattering matrix Eq. (1) and the 
measured values of the incoming and outgoing waves, we can directly obtain t and r.

We perform measurements for a range of driving frequencies between 400 Hz to 1200 Hz using a sweep sine 
function, and the results are shown in Fig. 2. Panels (b and c) correspond to the asymmetric CPA. The particular 
shape of both transmission and reflection coefficients is due to strong interference originating from the large 
reflection of each resonator around the resonance frequency.

Consequently, for this setting at frequency =⁎f 630a  Hz the required condition for the asymmetric CPA r = t 
is fulfilled as indicated by the vertical gray line. Similarly, for the configuration corresponding to the symmetric 
case, as shown in Fig. 2(d,e) the condition r = −2t, is also fulfilled at the CPA frequency =⁎f 988s  Hz (vertical 
gray line). The frequency of the CPA is not equal to the resonance frequency of the HRs i.e. f0 = 645 Hz and 
f0 = 975 Hz for the asymmetric and symmetric case respectively, as explained in the previous section.

By measuring the complex coefficients r and t we have experimentally determined the scattering matrix of the 
3-port network for the two different configurations for the frequency range of interest. We can thus now quantify 
the ability of our setup to completely absorb an input wave at the CPA frequency, by considering an asymmetric 
input vector = −+ + +p p p( , , ) (1, 1, 0)T T

1 2 3  [inset of Fig. 2(f)] and the experimentally obtained scattering matrix 
in Eq. (1). Then from the corresponding output we may calculate Θ by its definition from Eq. (5). The result is 
shown in Fig. 2(f) with the thick solid line, where at the CPA frequency we obtain an almost perfect absorption 
with Θ ≈ 5 × 10−4. The experimental result is in a good agreement with the theoretical prediction [thin solid line 
in Fig. 2(f)] calculated using the transfer matrix method.

We perform the same analysis for the network with the symmetric CPA. In particular, considering an input of 
the form =+ + +p p p( , , ) (1, 1, 1)T T

1 2 3  [inset of Fig. 2(g)] and using the experimental values of r and t [see 
Fig. 2(d,e)] we obtain Θ for a frequency range between 800 Hz to 1200 Hz. The result is shown with the thick solid 
line in Fig. 2(g), and in this case the system reaches a value of Θ ≈ 10−3 at ⁎fs . The peak at Fig. 2(g) appearing 
around 850 Hz is due to the limitation of the two microphones method. The latter fails in the vicinity of the reso-
nance of the cavity created by the main waveguide closed at one end by the loudspeaker. The second peak around 
1 kHz is due to small structural imperfections of our device. The comparison with the theoretical result illustrated 
with the thin line Fig. 2(g) shows a good agreement between the two, close to the CPA frequency. At this fre-
quency, the wavelength is 0.53 m and 0.34 m for asymmetric and symmetric CPA respectively. This is much larger 

Figure 2.  (a) View of the experimental device. (b,c) The phase and absolute value of the experimentally 
measured reflection and transmission coefficients t and r, as a function of frequency, for the configuration 
which exhibits an asymmetric CPA at =⁎f 630a  Hz. The resonance frequency of the HRs is f0 = 645 Hz 
corresponding to a cavity length lc = 0.02 m. CPA is ensured since both the real and the imaginary part of r and t 
are equal for this frequency (vertical gray line). (d,e) The phase and absolute value of the experimentally 
measured reflection and transmission coefficients r and −2t, as a function of frequency, for the configuration 
which exhibits a symmetric CPA at =⁎f 988s  Hz. The resonance frequency of the HRs is f0 = 975 Hz 
corresponding to a cavity length lc = 0.89 × 10−2 m. CPA appears when the two curves of both the real and 
imaginary part become equal, indicated by the vertical gray line. (f,g) The output to input power ratio Θ as a 
function of frequency for the asymmetric and the symmetric CPA respectively. The thick (thin) line corresponds 
to the experimental (theoretical) measurement. The insets depict the eigenvector used in order to obtain the 
curves in each case.
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than the diameter of the neck of the HRs (2rn = 0.9 × 10−2 m) and it is for this reason that our analytical model 
based on point scatterer approximation for the HRs is in agreement with the experimental observations. Finally, 
to characterize the subwavelength efficiency of our system we use the ratio λ/2d. For the case of asymmetric CPA, 
λ/2d = 5.4 while for the symmetric CPA, λ/2d = 3.4.

Interferometric control of the 3-port network
Up to this point we have shown that when a 3-port network is tuned to satisfy either Eqs (6) or (7) then it com-
pletely absorbs certain combinations of input waves from each port, corresponding to the S matrix eigenvectors 
(or their linear combinations). Here we study the behavior of such a tuned network, varying the input waves such 
that we deviate from the perfectly absorbed eigenvectors and the device transmits some amount of energy. In fact 
our goal is to identify the conditions under which a 3-port network acts both as perfect absorber (Θ = 0) and a 
perfect transmitter (Θ = 1) at the same frequency.

According to Eq. (5), an input vector in the form of an eigenvector of S, i.e. ψ = uiin  will result in λΘ = i
2 

as output to input ratio. If for the same parameter values and at the same frequency there is an eigenvalue λi = 0 
and one with λj≠i = 1 then the device exhibits both CPA and CPT. This constrain defines a pre-described value for 
the coefficients r and t which is different depending whether Eqs (6) or (7) is satisfied.

From asymmetric CPA to symmetric CPT.  We first consider the case when Eq. (6) is satisfied and thus 
λ1,2 = 0 leading to CPA with an asymmetric input ψ α β= +u uin 1 2 . Demanding also λ0 = 1 leads to 
ra = t = 1/3 [see Eq. (3)] and for the same 3-port network a symmetric input ψ = uin 0  results in CPT. Let’s note 
that, for our experimental device, as illustrated in Fig. 2(b), the measured value of the reflection coefficient is 

= .r 0 25a
xpe  and thus CPT cannot be reached.

In order to check if a realistic device that satisfying both the conditions for CPA and CPT can be found, we use 
an optimization algorithm. We first choose a prescribed operating frequency close to asymmetric CPA experi-
mental value =⁎f 630a  Hz and then we optimize the geometrical characteristics of the device to achieve the pre-
scribed condition ra = t = 1/3 at ⁎fa  (r and t are calculated using the analytical expressions from the transfer matrix 
method). The optimization method converges up to 99% with = .r 0 33a

op  and the resulting geometrical parame-
ters of the optimized device are given in the Method section.

To study the transition from CPA to CPT for the optimized network, we calculate Θ using an input vector of 
the form

γ= − .φu e(1, , ) (8)I
i T

a

Here, γ is a real number characterizing the ratio between the amplitudes of the incoming waves and φ denotes the 
phase difference from the CPA eigenvector (defined by γ = 0 and φ = 0). Using Eqs (1), (7) and (5) we find that

γ φ γ φ γ
γ
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In Fig. 3(a) we plot the parameter Θ as a function of γ and φ. We identify the CPA point at γ = φ = 0 and the 
CPT points at γ = ±φ/π = 1. From Eq. (9) and as illustrated in Fig. 3(a) the CPA and CPT points, are the extrema 
of this function. As such, small deviations around these points will lead to a quadratic sensitivity of the two phe-
nomena. The solid line in the (φ, Θ) plane shows Θ for a particular trajectory defined by γ = φ/π where γ ∈ [0, 1], 
which starts at CPA (γ = 0) and ends at CPT (γ = 1).

Figure 3.  (a) The output to input power ratio Θ as a function of γ and φ using the input vector uIa
, when the 

system is in the optimal configuration for asymmetric CPA with = .r 0 33a
op , as given by Eq. (9). At the (φ, Θ) 

plane we show the result obtained with the FEM simulation (squares) and with the result of Eq. (9) (solid line), 
along the trajectory γ = φ/π with γ ∈ [0, 1]. On the righthand side we plot the field distribution of the absolute 
pressure in the network at γ = φ = 0 (CPA) and at γ = φ/π = 1 (CPT) as obtained by the FEM simulation. (b) 
The output to input power ratio Θ as a function of φ1 and φ2 using the input vector uIs

 with γ1,2 = 1, when the 
system is in the optimal configuration for symmetric CPA with at = .r 0 657s

op , as given by Eq. (9). In the (φ1, Θ) 
plane we show the result obtained with the FEM simulation (squares) and with the result of Eq. (9) (solid line), 
along the trajectory φ1 = −φ2 with φ1 ∈ [0, π]. On the righthand side we plot the field distribution of the absolute 
pressure in the network at φ1,2 = 0 (CPA) and at φ1 = −φ2 = 2π/3 (CPT) as obtained by the FEM simulation.
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In addition, to verify the efficiency of the optimized device in the full 3D space, we use a 3D FEM simulations 
and study the corresponding geometry for the trajectory γ = φ/π with uIa

. The result of the FEM simulation is 
shown with the black square lines both on top of the 3D contour and on the (φ, Θ) plane. There is a good agree-
ment between the two results, verifying our model using the transfer matrix method. The 3D network is able to 
achieve an almost total absorption with an output ratio Θ ≈ 10−3, and an almost perfect transmission with 
Θ = 0.93.

From symmetric CPA to asymmetric CPT.  For the case where Eq. (7) is satisfied and thus λ0 = 0, the 
network exhibits CPA for symmetric inputs of the form ψ = uin 0 . Here the additional condition for CPT is 
λ1,2 = 1 which leads to rs = −2t = 2/3. Then the device will also completely transmit asymmetric inputs of the form 
ψ α β= +u uin 1 2 . For this case our experimental setup featuring a value = .r 0 52s

exp  is not able to reach 
CPT.

Thus, an optimization scheme is again used to obtain a device that achieves both CPA and asymmetric CPT. 
We choose to optimize at a frequency close to the experimental symmetric CPA frequency =⁎f 988s  Hz. The 
optimization method converges up to 98.5% corresponding to = .r 0 657a

op  and the parameters of the optimized 
device are given in the Method section.

In a similar way as in the asymmetric case, we study the dependence of Θ as a function of two parameters, 
using the input vector

= φ φu e e(1, , ) , (10)I
i i T

s
1 2

where φ1,2 quantify the phase differences from the CPA eigenvector. Using Eqs (1) and (5) we obtain that

φ
φ φ φ φ
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The dependence of Θ on the two phase differences is plotted in Fig. 3(b). We observe that the maximum of Θ 
as we discern from the CPA eigenvector, is obtained when the two phase differences satisfy φ1 = −φ2 = 2π/3, i.e. 
when | 〉 = | 〉u uI 1,2S

. In this case also, as illustrated in Fig. 3(b), the CPA and CPT points are the extrema of this 
function and small deviations around these points imply a quadratic sensitivity of the two phenomena.

The optimized device’s scattering properties are also verified by means of 3D FEM simulations using an input 
vector of the form of Eq. (10) and following the trajectory φ1 = −φ2 with φ1 ∈ [0, π]. The result of the FEM simu-
lations are shown on the (φ1, Θ) plane and on the 3D plot by the black square lines and are found to be in a good 
agreement with the 1D analytical model. The device is able to reach CPA with an input output ratio Θ = 10−4 and 
a strong transmission with Θ = 0.91. Let’s note that in this case the high output contrast of the network can be 
controlled only by the relative phase of the inputs and not the amplitudes.

Discussion
We conclude by discussing the ability of a 3-port network to exhibit a very large output contrast (from CPA to 
CPT) at the same frequency. The physical mechanism of CPA is based on the balance of the losses stemming from 
the resonator and the leakage rate of energy from the resonator to the waveguide. This is achieved by operating 
close to the resonance frequency where the losses from the HR are strong. Thus, in order to achieve CPT we need 
to annihilate the effect of losses from the HRs, and this is possible by engineering the input waves and create a 
destructive interference pattern at the positions of the HRs, which in the low frequency regime act almost like 
point scatterers. In fact, the disagreement between the analytical 1D model and the FEM simulations in the 
projections in Fig. 3(a,b) close to the CPT point, stems exactly from the fact that in the analytical model HRs are 
considered as points, while in the FEM they are small but finite. However the mechanism for CPT is the same, as 
illustrated in the right panels of Fig. 3(a,b) for the CPT pressure profiles which acquire a minimum at the position 
of the resonator.

In Section II we have found the conditions to achieve coherent perfect absorption in a symmetric 3-port net-
work, using the eigenvalues and eigenvectors of the corresponding S matrix. The conditions are directly related 
to the values of the transmission (t) and the reflection (r) coefficients. It is found that the condition r = t leads to 
an infinity of asymmetric inputs which are perfectly absorbed (asymmetric CPA) while for r = −2t a symmetric 
input of in-phase and equal amplitude waves from each port is perfectly absorbed (symmetric CPA). This is in 
great contrast with the two port case where (for a particular device) only one input is able to achieve CPA. The 
above conditions, are experimentally observed in an acoustic 3-port network composed of three connected wave-
guides sideloaded by Helmholtz resonators in the low frequency audible range. In Section III we have studied 
how the output of the system is affected when the input waves deviate from the corresponding CPA inputs. In 
particular we have shown that a 3-port network can exhibit both perfect absorption and perfect transmission at 
the same frequency if an additional constrain is imposed. The latter dictates a value of r = t = 1/3 for the case of 
an asymmetric CPA (leading to a symmetric CPT), and r = −2t = 2/3 for a symmetric CPA (thus an asymmetric 
CPT). The dependence of the output to input power ratio on the relative amplitude and phases of the input vectors 
is found analytically. Using this expression we find that deviations from CPA and CPT are extrema of this func-
tion and thus are quadratically depended on small amplitude and phase mismatches. Using an optimization algo-
rithm and the analytical expressions of the S matrix elements, we further provide particular examples of acoustic 
networks able to achieve both CPA and CPT (both symmetric and asymmetric). The optimization method never 
converged 100 % since both our model (and the realistic system) exhibits distributed losses and for any finite 
length of propagation some energy is always lost. Finally, using FEM 3D simulation of the optimized configura-
tions we have confirmed the transition from perfect absorption to a nearly perfect transmission.
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The additional control over perfect absorption and the ability to go from CPA to CPT using point scatterers, 
indicate that the 3-port system can be used as a unit cell to construct complex networks with prescribed wave 
scattering properties. Our theoretical results can be directly generalized for symmetric N-port systems, and using 
them build periodic networks with different characteristics. Additionally, 3-port networks which are asymmetric, 
exhibit more degrees of freedom and could provide the means for extra control, such as directional propagation 
from selected ports.

Method
Determination of the elements of the scattering matrix.  We consider the following 2-port scattering 
problem
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which described the reflection and transmission from port 1 to port 2 in the presence of port 3, as shown in Fig. 4. 
These coefficients can then be used to describe the full 3 by 3 scattering problem as defined in Eq. (1), due to the 
symmetry of the network. To compute r and t we use the Transfer Matrix Method (TMM) which utilizes the con-
tinuity of the pressure field and the conservation of mass. The corresponding matrix equation is given by
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Here, = ++ −P p pi i i  is the total pressure and ωρ= ∂U S P i/( )i n ii
 is the acoustic flux velocity parallel to the vector ni, 

normal to the waveguide section at the i-th port. We consider sound propagation in air with density ρ and ω 
denotes the angular frequency.

Eq. (13) is obtained by considering an incident wave from port 1 and assuming no backward waves for the two 
ports remaining (no input and anechoic end) as illustrated in the Fig. 4. Then by rearranging Eq. (13) we obtain 
the matrix elements of Eq. (12) as follows.

=
+ − −
+ + +

=
+ + +

r T T Z T Z T
T T Z T Z T
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T T Z T Z T

/
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, 2
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where Zc = ρc/S is the characteristic impedance of the waveguide of cross-section S. The elements of the matrix 
=T T T T T THR d b d HR3

 are explained in the following. The transfer matrix THR, corresponds to the HR loading the 
waveguide and is given by

T Y
1 0

1 (15)HR
HR
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where YHR is the entrance admittance of the HR considered as a point scatterer. The expression for the admittance 
can be found for example in ref.15, where detailed information about the viscothermal losses are also included. Td 
is the transfer matrix for the propagation along the waveguide of length d and is given by

=

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where k is the wavenumber. Tb3
 describes the influence of the third branch of the network (see Fig. 4), and takes 

the following form

Figure 4.  Schematic of the 3-port system for the determination of the reflection and transmission coefficients 
by the Transfert Matrix Method. THR describes the scattering by the side-loaded HR. Td illustrates the 
propagation along the waveguide of length d. Tb3

 describes the influence of the third branch composed by a 
infinite waveguide side-loaded by a HR at the distance d from the connection.
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In our calculations we consider the effect of losses in the waveguide and in the HRs using the Zwikker and 
Kosten model52 which includes an imaginary part in the wavenumber and in the characteristic impedances of the 
waveguides. Namely, we replace the wave number and the impedances by the expressions
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(19)

by setting s = R/δ where R is the radius of the considered waveguide, and δ μ πρ= f2 /(2 )  is the viscous bound-
ary layer thickness, with μ being the viscosity of air. c is the celerity of the wave, ρ is the mass density of air and 
ξ = Pr  with Pr the Prandl number at atmospheric pressure; β = − i(1 )/ 2  and γ = 1.4, the heat capacity ratio 
of air.

Optimization.  From Eq. 14, we obtain the reflection and transmission coefficients as a function of all the 
system’s geometrical parameters i.e.  r r r d, , , , , ,t n n c c  (see Fig. 1) and of the operating frequency f. In order to 
find the device achieving both CPA and CPT, the reflection and transmission coefficients should satisfy Eqs (6 
and 7) with the additional constraints r = 2/3 [r = 1/3]. To obtain solutions satisfying this condition, a numerical 
optimization based on simplex derivative free method Nelder-Mead53 with 6 optimization parameters (fixing the 
operating frequency) under experimentally and physically reasonable constraints is used.

Numerical computation.  The 3D numerical simulations are conducted with the commercial finite element 
method (FEM) @Comsol. In the FEM model, the effective expressions for the complex wavenumber and imped-
ances of each part of the system are used to take into account the viscothermal losses. For the asymmetric case, 
the geometrical parameters of the system are lc = 0.289 m, rc = 0.022 m, ln = 0.049 m, rn = 0.008 m, rt = 0.045 m 
and d = 0.136 m. For the symmetric case the parameters are lc = 0.36 m, rc = 0.02 m, ln = 0.036 m, rn = 0.01 m, 
rt = 0.046 m and d = 0.17 m.
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